Holomorphic vector fields of compact pseudo-Kähler manifolds
نویسندگان
چکیده
منابع مشابه
Strictly Kähler-Berwald manifolds with constant holomorphic sectional curvature
In this paper, the authors prove that a strictly Kähler-Berwald manifold with nonzero constant holomorphic sectional curvature must be a Kähler manifold.
متن کاملSpaces of Conformal Vector Fields on Pseudo-riemannian Manifolds
We study Riemannian or pseudo-Riemannian manifolds which carry the space of closed conformal vector fields of at least 2-dimension. Subject to the condition that at each point the set of closed conformal vector fields spans a non-degenerate subspace of the tangent space at the point, we prove a global and a local classification theorems for such manifolds.
متن کاملPseudo holomorphic curves in symplectic manifolds
Definitions. A parametrized (pseudo holomorphic) J-curve in an almost complex manifold (IS, J) is a holomorphic map of a Riemann surface into Is, say f : (S, J3 ~(V, J). The image C=f(S)C V is called a (non-parametrized) J-curve in V. A curve C C V is called closed if it can be (holomorphically !) parametrized by a closed surface S. We call C regular if there is a parametrization f : S ~ V whic...
متن کاملClosed conformal vector fields on pseudo-Riemannian manifolds
∇XV = λX for every vector field X. (1.2) Here ∇ denotes the Levi-Civita connection of g. We call vector fields satisfying (1.2) closed conformal vector fields. They appear in the work of Fialkow [3] about conformal geodesics, in the works of Yano [7–11] about concircular geometry in Riemannian manifolds, and in the works of Tashiro [6], Kerbrat [4], Kühnel and Rademacher [5], and many other aut...
متن کاملstrictly kähler-berwald manifolds with constant holomorphic sectional curvature
in this paper, the authors prove that a strictly kähler-berwald manifold with nonzero constant holomorphic sectional curvature must be a kähler manifold.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2012
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2011.08.001